Fate of plasma membrane during endocytosis. II. Evidence for recycling (shuttle) of plasma membrane constituents
نویسندگان
چکیده
Cultured rat embryo fibroblasts were first allowed to store for 24 h fluorescein-labeled goat immunoglobulins directed against rabbit immunoglobulins (F anti-R IgG), and were subsequently exposed for 24 h to [(3)H]acetylated rabbit immunoglobulins known to bind to the cell membrane either specifically (anti-plasma membrane IgG: A anti-PM IgG) or unspecifically (contol IgG: AC IgG). As a result of immunological interaction between the two antibodies (no effect was found if the cells had been preloaded with control goat FC IgG), a substantial portion of the stored F anti-R IgG was unloaded from its intracellular storage site, appearing in the medium in the form of soluble immune complexes with rabbit A IgG. Part of the unloaded F anti-R IgG also was recovered in association with the plasma membrane, but only when A anti-PM IgG was used. In addition, significant reverse translocation of AC IgG from plasma membrane to lysosomes or some related intracellular storage compartment was also observed. With A anti-PM IgG, this translocation was less marked and affecte at the same time the plasma membrane marker 5'- nucleotidase. Cells that had stored horseradish peroxidase (HRP) simultaneously with F anti-R IgG did not unload HRP when exposed to A anti-PM IgG. These results support strongly, though not unequivocally, the concept that plasma membrane patches interiorized by endocytosis are recycled, or shuttled, back to the cell surface. In the framework of this concept, recycling antibody-coated membrane is taken to serve as vehicle for the selective intracellular capture and extracellular discharge of immunologically bound F anti-R IgG. The alternative explanation of regurgitation triggered off by immune complexes is considered less likely in view of the lack of HRP unloading.
منابع مشابه
The fate of the plasma membrane during endocytosis.
Endocytosis is the only physiological route clearly described so far by which macromolecules and non-permeating micromolecules can gain access to cells. It involves the invagination of the plasma membrane around extracellular material, giving rise to an endocytic vesicle. In most cases, this vesicle will fuse with a lysosome, and a digestive vacuole (secondary lysosome) will be formed in which ...
متن کاملThe cell fate determinant numb interacts with EHD/Rme-1 family proteins and has a role in endocytic recycling.
The adaptor protein Numb is necessary for the cell fate specification of progenitor cells in the Drosophila nervous system. Numb is evolutionarily conserved and previous studies have provided evidence for a similar functional role during mammalian development. The Numb protein has multiple protein-protein interaction regions including a phosphotyrosine binding (PTB) domain and a carboxy-termina...
متن کاملNumb Inhibits the Recycling of Sanpodo in Drosophila Sensory Organ Precursor
In metazoans, unequal partitioning of the cell-fate determinant Numb underlies the generation of distinct cell fates following asymmetric cell division [1-5]. In Drosophila, during asymmetric division of the sensory organ precursor (SOP) cell, Numb is unequally inherited by the pIIb daughter cell, where it antagonizes Notch [1, 6-8]. Numb inhibits Notch partly through inhibiting the plasma memb...
متن کاملFate of plasma membrane during endocytosis. I. Uptake and processing of anti-plasma membrane and control immunoglobulins by cultured fibroblasts
The uptake and processing by cultured rat embryo fibroblasts of control rabbit immunoglobulins (C IgG) or IgG directed against plasma membrane constituents (anti-PM IgG), and labeled with fluorescein (F) or with radioactive acetate (A), have been investigated by cell fractionation and immunological techniques. Both F and A anti-PM IgGs become bound to the cell surface, by a process that is slow...
متن کاملRme-1 regulates the recycling of the cystic fibrosis transmembrane conductance regulator.
Endocytic motifs in the carboxyl terminus of cystic fibrosis transmembrane conductance regulator (CFTR) direct internalization from the plasma membrane by clathrin-mediated endocytosis. However, the fate of such internalized CFTR has remained unknown. Internalized membrane proteins can be either targeted for degradation or recycled back to the plasma membrane. Using cell surface biotinylation a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 82 شماره
صفحات -
تاریخ انتشار 1979